Tetrahedron Letters Vol.21, pp2697-2699 © Pergamon Press Ltd. 1980. Printed in Great Britain

UNIMOLECULAR AND BIMOLECULAR TRANSFER OF N-SUBSTITUENTS FROM PYRIDINIUM CATIONS: EVIDENCE FOR A CLEAR MECHANISTIC CHANGEOVER

Alan R. Katritzky,* Giuseppe Musumarra, Kumars Sakizadeh, Sayed M. M. El-Shafie, and Bratislav Jovanovic

School of Chemical Sciences, University of East Anglia, Norwich, NR4 7TJ.

 $\frac{Summary}{M} = \frac{N-Substituents in 2, 4, 6-triphenylpyridiniums are transferred to piperidine, morpholine and pyridine by unimolecular and/or bimolecular processes in chlorobenzene solution. These processes are quite distinct and afford no evidence for a mechanism intermediate between <math>S_N 1$ and $S_N 2$.

1-Benzyl-2, 4, 6-triphenylpyridinium perchlorate reacts with piperidine to give 2, 4, 6-triphenylpyridine and 1-benzylpiperidine.¹ The reaction was studied kinetically in chlorobenzene solution: at 100° it shdwed first order dependence on substrate (over range $3 \times 10^{-5} - 10^{-3}$ molar) and first order dependence on piperidine (over range $10^{-3} - 2 \times 10^{-1}$ molar). The second order rate constants $\underline{k}_2 = 4.94 \times 10^{-3}$ (1 mole⁻¹ sec⁻¹) was not affected significantly by ionic strength² or by changing the anion from ClO_4^- to BF_4^- . At 100° the rate varied by a factor of <u>ca</u>. 50 as the solvent varied from chlorobenzene to dimethyl sulphoxide and n-pentanol.

The reactions of a series of <u>N</u>-substituted-2, 4, 6-triphenylpyridiniums with piperidine in chlorobenzene were studied at 100° to determine the kinetic dependence of the rate on piperidine concentration. Some of the results are shown in Figures 1-4. For the benzyl compound (Fig. 1), and also for the methyl, allyl, and <u>p</u>-methylbenzyl derivatives, the reaction clearly proceeds almost entirely by a second order process. For the i-propyl and s-butyl derivatives (Figs. 2, 3), while there is a significant second order component, reaction also occurs by a first order process, independent of [piperidine]. This also applies to the 1-<u>p</u>-methoxybenzyl analogue which was studied at 40° as the reaction was very fast at higher temperatures. The pattern revealed is that expected: primary alkyl and benzyl react by S_N², while for secondary alkyl and <u>p</u>-methoxybenzyl S_N¹ processes are also important.

Table 1.First and second-order rate constants for reactions of 1-substituted 2,4,6-triphenylpyridiniums with piperidine in chlorobenzene at 1000 a

	$\underline{\mathbf{p}}$ -Substituted benzyl								
<u>N</u> -Subst.	Me	$CH_2CH:CH_2$	н	Me	MeO	CHMe ₂	CHMeEt		
$\underline{k}_2 \times 10^3$ (1 mole ⁻¹) sec ⁻¹	0,60	1.26	4.94	8. 52	0,45	0,14	0,10		
$\underline{k}_1 \ge 10^5 (\text{sec}^{-1})$	< 0. 1	< 0.5	< 0. 3	< 0, з	3.6	0,89	3.20		

 $\frac{a}{2}$ Measurements refer to 40° for <u>p</u>-methoxybenzyl derivative.

First and second order rate constants are recorded in Table 1. As expected the \underline{k}_2 values increase in the series i-Pr $\langle s$ -Bu $\langle CH_3 \rangle \langle CH_2 CH_2 CH_2 CH_2 \rangle \langle \underline{p}-MeOC_6H_4CH_2$. The \underline{k}_1 values shown for CH_3 , allyl, benzyl and $\underline{p}-CH_3C_6H_4CH_2$ are not significantly different from zero.

We next studied the reactions of the benzyl, i-propyl, s-butyl and <u>p</u>-methoxybenzyl derivatives with morpholine and pyridine as nucleophiles in place of piperidine. For the benzyl derivative, these nucleophiles also showed only bimolecular reaction; the \underline{k}_2 values decreased for piperidine > morpholine> pyridine in the expected order of decreasing nucleophilicity (see Fig. 1). However, for i-propyl both unimolecular and bimolecular processes were found for each of the nucleophiles: whereas the \underline{k}_2 values decreased in the order of the nucleophilicity of the amine used, the \underline{k}_1 values were constant and independent of nucleophile (Fig. 2). s-Butyl and <u>p</u>-methoxybenzyl gave plots of the same form as that found for i-propyl, which strongly supports independent S_N^1 and S_N^2 reactions without an "intermediate" mechanism.

We have shown separately that high yields of the expected substitution products are produced by reactions of e.g. 1-i-propyl-2, 4, 6-triphenylpyridinium tetrafluoroborate both with piperidine and with pyridine.³ These present results show that the bimolecular S_N^2 reaction found for all substrates is accompanied by unimolecular ionisation for the i-propyl, s-butyl, and <u>p</u>-methoxybenzyl derivatives. We interpret this as evidence for simultaneous S_N^1 and S_N^2 reactions between the corresponding substrates and the amines studied.

The S_N^{1} to S_N^{2} mechanistic changeover has been the subject of considerable controversy; it has been proposed both that substitutions quite generally proceed by initial ionisation⁴ and alternatively that solvolyses generally proceed with solvent nucleophilic assistance⁵. We believe that the above data provide in the case of 1-(<u>p</u>-methoxybenzyl)-, 1-i-propyl- and 1-s-butyl-2, 4, 6-triphenylpyridinium particularly clear evidence of a clean S_N^{1} to S_N^{2} mechanistic changeover.

Table 2.First and second order rate constants for reaction of 1-substituted2.4.6-triphenylpyridiniums with morpholine and pyridine in chlorobenzene

Nucleophi	le	С ₆ Н ₅ СН ₂	i-Pr	s-Bu	\underline{p} -MeOC ₆ H ₄ CH ₂
Momholin	$\int \underline{\mathbf{k}}_2 \times 10^3 (1 \text{ mole}^{-1} \text{ sec}^{-1})$	2.37	0.064	0.052	0,20
Morphon	$\left\{ \underline{\mathbf{k}}_{1} \ge 10^{5} (\mathrm{sec}^{-1}) \right\}$	<0.2	0,88	2, 9	4.0
Pyridine	$\left(\frac{k}{2} \ge 10^3 (1 \text{ mole}^{-1} \text{ sec}^{-1})\right)$	0.032	<0.01	< 0.01	<0. 04
	$\left(\underline{\underline{k}}_{1} \times 10^{5} (\text{sec}^{-1})\right)$	<0.1	0 . 9 4	3,0	4,0

 $\frac{a}{2}$ at 100° except for p-methoxybenzyl at 40°.

CAPTIONS FOR FIGURES

Plots of pseudo first order rate constants (\underline{k}_{obs}) <u>vs</u> nucleophile concentration for reactions of 1-substituted 2,4,6-triphenylpyridinium tetrafluoroborates in chlorobenzene solution with piperidine (∇), morpholine (O), and pyridine (\bullet). Fig. 1: 1-benzyl at 100⁰. Fig. 2: 1-i-propyl at 100⁰.

Acknowledgement - We thank NATO for a grant (to G. M.).

REFERENCES

- (1) A.R. Katritzky, J.B. Bapat, R.J. Blade, B.P. Leddy, P.-L. Nie, C.A. Ramsden, and S.S. Thind, J.C.S. Perkin I 418 (1979).
- (2) Unlike reactions with anionic nucleophiles for which large salt effects were found as expected.
- (3) J. Lloyd and R. C. Patel, unpublished work.
- (4) R.A. Sneen, Accounts Chem. Research 6, 46 (1973); cf. D. J. McLennan, Ibid, 9, 281 (1976) and references therein.
- (5) T.W. Bentley and P. von R. Schleyer, Adv. Phys. Org. Chem. 14, 15 (1977).

(Received in France 24 March 1980)

2699